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Abstract

From the Fourier transform method, the modified Green operator integral over a bounded domain in an infinite

elastic medium takes, on each domain point, the form of a weighted average over an angular distribution of a single

elementary operator. The Radon transform provides a geometric definition of the weight function characteristic of the

domain shape, in terms of the domain intersections with all planes passing through the point. It allows a geometrically

more meaningful analytical resolution of the general inclusion problem in an infinite medium of general elasticity

symmetry, the ‘‘inclusion’’ being any bounded domain possibly made of groups (or distributions) of inclusions. The

method is also likely to provide insights in the related problem of effective moduli estimates for heterogeneous

microstructures. The determination of the weight functions characteristics of the involved inclusional domain shapes is

therefore a key step of the resolution, the mean values of these weight functions being of first-order interest. Here, it is

exemplified, on the case of cuboidal domain shapes, that for material morphologies involving shapes of hardly

accessible exact mean weight functions, one can make use of approximate (conveniently analytical) expressions, to

remain more accurate than using ellipsoidal approximations of the shapes.
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1. Introduction

The problem of the elastic behaviour of an isolated inclusion in an infinite elastic matrix submitted to a

uniform strain from infinity has been solved by Eshelby (1957) in the case of an ellipsoidal shape. For this

particular shape type, the problem simplifies owing to the fact that the involved so called ‘‘modified Green

operator integral’’ (and the related Eshelby tensor) over the inclusion is uniform in it. Since then, this

property of ellipsoidal shapes is widely used in inclusion-related problems, aiming at stress–strain fields,
stored energy, or overall property estimates for heterogeneous materials (see for example reviews in Mura,

1982 or Nemat-Nasser and Hori, 1999). Applications to real materials are made possible in approximating,
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more or less abusively, as ellipsoidal the shapes of contained particles, voids or grains (in polycrystals).

Even for ellipsoidal inclusions, except for isotropic and transversally isotropic elasticity, fully analytical

calculations of the modified Green operator integral are not at hand (see Withers (1989) for transverse

isotropy for example), and the calculations in general elasticity symmetry are mostly performed using the
Fourier transform method with numerical integration techniques. For non-isolated inclusions, calculations

are furthermore complicated by interactions terms, which also have been approximated in considering pairs

of ellipsoidal inclusions (as for example in Berveiller et al. (1987), from the Green/Fourier approach, in the

context of polycrystals elasto-plasticity). Increasing difficulties are encountered when considering non-

ellipsoidal inclusion shapes, for which the involved modified Green operator integral (or the Eshelby

tensor) over them is not uniform in general. Such situations are so far treated in mixing partly analytical

and partly numerical calculations, with case per case analyses depending on both the considered shape and

the elasticity symmetry. As examples of non-ellipsoidal inclusion types that have been considered in dif-
ferent inclusion-related problems, in either contexts of Green/Fourier techniques, potential methods, or

numerical approaches, one finds cubes (Chiu, 1977), cubic inclusion pairs (Canova et al., 1992), finite

cylinders (Wu and Du, 1995a,b), polyhedra (Rodin, 1996), polygonal axi-symmetric inclusions, and duplex

(i.e. coated) inclusions (Riccardi and Montheillet, 1998, 1999), star shaped inclusions (Mura, 1997) among

others. More general calculation methods, formally applicable for inclusions of general shapes, have also

been proposed, based on different expansions or decompositions of the G Green operator (Kinoshita and

Mura, 1971), or of its C related modified Green operator integral (Kneer, 1965; Willis, 1981), but mostly

as an alternative to the Eshelby approach of the ellipsoidal shape case.
A better capacity to account for non-ellipsoidal inclusion shapes being likely to improve the resolution of

many inclusion-related problems, we here reconsider the analytical calculation of the modified Green

operator integral for the general inclusion shape case, for general elasticity symmetry, from the framework

of the Radon transform method (Gel�fand et al., 1966), and with the help of integral geometry consider-

ations (Santalo, 1976). The Radon transform method, of which recent papers present applications in

various fields of mechanics and physics (Jiang, 2000; Lykotrakis and Georgiadis, 2003) advantageously

provides in inclusion problems context a geometrically more meaningful analytical resolution method,

which holds for general bounded domains possibly made of groups of inclusions. Based on this Radon
transform method, the resolution of the ‘‘inclusion problem’’ mainly aims at calculating a shape-charac-

teristic angular weight function at each r point of the considered domain, which is defined from the domain

intersections with all planes passing through the r point. A particular interest of this method for the non-

ellipsoidal, general, inclusion problem, that we here stress, is to allow an approximate resolution (when the

exact one is not at easy hand) in terms of the approximation of the characteristic weight function, and more

precisely of its mean value over the concerned domain. With regard to real inclusion shapes in materials,

approximating these mean weight functions may be more relevant than best ellipsoidal fitting of inclusion

shapes, in preserving tractable analytical resolutions. This may also be of use for other characteristic shapes
of a material microstructure, namely characteristic shapes of spatial arrangements of inclusions.

In Section 2, we recall, for a general bounded domain shape, the expression of the modified Green ope-

rator integral, as classically resulting from the Fourier transform method. One then specifies the geomet-

rical interpretation of the involved weight function with regard to the domain geometry, and its connection

to the inverse Radon transform of the characteristic function of the domain. The applicability to bounded

domains made of groups of inclusions, and from then to spatial arrangements of statistically defined

symmetry, is illustrated from the case of an inclusion pair set. One next recall the expression of the involved

elementary operator, which is known connected to the modified Green operator integral of the infinitely
oblate spheroid (platelet), also characteristic of laminate structures (Walpole, 1967; Kinoshita and Mura,

1971). In Section 3, we reset the general problem of the isolated inclusion (bounded domain) in an infinite,

elastically anisotropic, matrix, to illustrate in simple cases how the Radon transform method can be of use.

It is also next illustrated for the related problem of the effective moduli estimate of a two-phase inclusion/
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matrix microstructure with congruent inclusions uniformly distributed in space, according to some sym-

metry shape characteristic. In these simple examples, the mean weight functions related to the involved

characteristic shapes are the needed morphological informations for resolution. In Section 4, calculations of

such mean weight functions are exemplified for single convex cuboidal shapes in the whole range between
the cube and its reciprocal octahedron, which all have the sphere as ‘‘best ellipsoidal fit’’. Exact ones are

provided for the limit cube and octahedron cases, approximate ones for the intermediate cuboids. Related

modified Green operator integrals are calculated for isotropic elasticity, to be compared to the sphere one.

Section 5 concludes.
2. The modified Green operator integral for an inclusion

We consider an infinite homogeneous elastic medium of C elasticity moduli, of Gðr� r0Þ Green ‘‘strain’’

tensor, giving the uðrÞ displacement field due to a punctual force Fðr0Þ by uiðrÞ ¼ Gijðr� r0ÞFjðr0Þ, classically
defined (Hill, 1952; Kr€ooner, 1958) by
1 Th
2 Fo
CmnpqGpj;qnðr� r0Þ þ dðr� r0ÞDmj ¼ 0: ð1Þ
In Eq. (1), D is the Kronecker tensor, dðrÞ is the delta (generalised) function in R3 of arbitrary chosen frame,

with r ¼ ðx1; x2; x3Þ. Introducing the notations
Cpqjnðr� r0Þ ¼ � o2Gpjðr� r0Þ
oxqoxn

����
ðp;qÞ;ðj;nÞ

 !
with �ðp; qÞ; ðj; nÞ� specifying the symmetry on the pairs of indices within brackets, the diagonal symmetric 1

Cpqjnðr� r0Þ operator, is generally called the modified Green operator. The integral of this operator over a

bounded V domain in the considered medium, here denoted tVpqjn ðrÞ, which depends on the V domain shape

and on the C elasticity moduli of the matrix containing V , writes by definition
tVpqjnðrÞ ¼
Z
V
Cpqjnðr� r0Þdr0 ð2Þ
with V of general morphology so far. In this paper, r is always inside the concerned domain.

2.1. Calculation from the Fourier transform method

The calculation of tV ðrÞ from Eq. (1) can be performed from the Fourier transform 2 of Eq. (1)
CmnpqG
^

pjðKÞkqkn ¼ Dmj ð3Þ
where K ¼ ðk1; k2; k3Þ and jKj ¼ k. In spherical coordinates such that ki ¼ kxi, K ¼ kx, with

x1 ¼ sinðhÞ cosðuÞ, x2 ¼ sinðhÞ sinðuÞ, x3 ¼ cosðhÞ, Eq. (3) writes (x standing for (h;/))
at is ðpq; jnÞ symmetric.

r the Fourier and inverse Fourier transforms, we use the following definitions:

G
^

pjðKÞ ¼
Z

GpjðrÞ expiKr dr; GpjðrÞ ¼
1

8p3

Z
G
^

pjðKÞ exp�iKr dK

d
^

ðKÞ ¼
Z

dðrÞ expiKr dr ¼ 1; dðrÞ ¼ 1

8p3

Z
exp�iKr dK:
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Cmnpqxqxnk2G
^

pjðKÞ ¼ MmpðxÞk2G
^

pjðKÞ ¼ Dmj ) k2G
^

pjðKÞ ¼ ðM�1ÞpjðxÞ: ð4Þ
The k2G
^

pjðKÞ product in Eq. (4) is independent on the k modulus of the K vector. Next, in Eq. (2),

one replaces Cpqjnðr� r0Þ by the inverse transform of its Fourier transform to write
tVpqjnðrÞ ¼
1

8p3

Z
V

Z
ððM�1ÞpjðxÞxqxnÞ

���
ðpqÞ;ðjnÞ

exp�iKðr�r0Þ dK

� �
dr0 ð5aÞ
Writing dK ¼ k2 dk sinðhÞdhdu ¼ k2 dkdx, one obtains
tVpqjnðrÞ ¼
1

8p3

Z
V

Z
X
tepqjnðxÞ

Z 1

k¼0

k2 exp�iKðr�r0Þ dkdx
� �

dr0 ð5bÞ
where X is the unit sphere. Permutation of the V and X integrals ends to formally write
tVpqjnðrÞ ¼
Z
X
tepqjnðxÞwV ðx; rÞdx ð6Þ
with
wV ðx; rÞ ¼
1

8p3
nV ðx; rÞ; nV ðx; rÞ ¼

Z
V

Z 1

k¼0

k2 exp�ikxðr�r0Þ dk
� �

dr0 ð7aÞ

tepqjnðxÞ ¼ ðM�1ÞpjðxÞxqxn

� �
ðpqÞ;ðjnÞ

ð7bÞ
Obviously from Eq. (6), and whatever the V domain shape is, tV ðrÞ writes under the form of a weighted

angular average of teðxÞ elementary operators, with a wV ðx; rÞ weight function. This form for tV ðrÞ can be

found in many works related to inclusion or inclusion pairs problems (for examples, Berveiller et al., 1987;
Canova et al., 1992), since it is on the way of the Green/Fourier resolution method. It is here attempted, in

the context of inclusion-related problems, and especially for other situations than ellipsoidal domain

shapes, to more fully take benefit of the fact that Eq. (6), with Eqs. (7), is the expression of tV ðrÞ in terms of

its inverse Radon transform. We first and mainly make geometrically explicit the wV ðx; rÞ weight function
in this framework for general bounded (simply connected or not) V domain shapes. The expression of the

(known) teðxÞ operator is next recalled.

2.2. Explicitation of the weight function

In a (x; y;z) frame with Oz==K==x, such that K � r ¼ kx � r ¼ kz, Eq. (7a) reads
nV ðx; rÞ ¼ � 1

2

Z
V

Z þ1

�1
ðitÞ2 exp�itðz�z0Þ dt

� �
dr0 ¼ �p

Z
V
d00ðz� z0;xÞdr0 ð8Þ
with d00ðz� z0;xÞ, the second z-derivative of the one-dimensional delta function, x both defining a direction

in space and the infinite z-oriented axis along this direction. Setting dr0 ¼ dsV ðz0;xÞdz0, with sV ðz0;xÞ the
area of the section of the volume V by the plane of z0 ¼ x � r0 equation, yields
nV ðx; rÞ ¼ �p
Z z0¼þ1

z0¼�1

Z
sV ðz0 ;xÞ

dsV ðz0;xÞ
 !

d00ðz� z0;xÞdz0 ¼ �ps00V ðz;xÞ ð9aÞ
where s00V ðz;xÞ is the second z-derivative of sV ðz;xÞ. Eq. (7a) thus provides wV ðx; rÞ as
wV ðx; rÞ ¼ � 1

8p2
s00V ðz;xÞ ð9bÞ
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Fig. 1. x-breadth and sections of x normal for: (a) a simply connected and convex; (b) a simply connected and concave; (c) a multiply

connected, regular domain.
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i.e. proportional to the second z-derivative of the planar section area of V , of x normal, passing through the

r point. So far, the only restrictions on the shape of the V bounded domain are the existence conditions for

the s00V ðz;xÞ derivatives, for which it is enough to assume regular (smooth) V domains, in the sense of non-

strictly zero product of the principal radii of curvature at each point of the V surface. Since V is bounded,

the z0 integral in Eq. (9a) is only non-zero within the ½D�
V ðxÞ;Dþ

V ðxÞ� ¼ 2DV ðxÞ breadth of V in the x-
direction, i.e. the distance between the two opposite tangent planes to V , of x-normal. As assessed in what

follows, these definitions likely hold as well for single domains or for sets of regular sub-domains, as
illustrated in Fig. 1 for simply connected convex (a) or not convex V domains (b), and for a multiply

connected V domain made of two sub-domains (c). For V simply connected convex domains, the 2 DV ðxÞ
breadths characterise the support function of V , otherwise they characterise the support function of the

convex hull of V , while the z0 integral over bD�
V ðxÞ;Dþ

V ðxÞc then dissociates into several ones over separated

intervals. For centrosymmetric domains, the z0 integral symmetrically ranges over b�DV ðxÞ;DV ðxÞc.
Special attention will be paid to simply connected, convex centrosymmetric, regular domains.

For general V domains, wV ðx; rÞ is not uniform in V . Let�s then consider the wV ðxÞ spatial mean value of

wV ðx; rÞ (i.e. nV ðxÞ of nV ðx; rÞ) over V , which appears in the tV ¼ 1
v

R
V t

V ðrÞdr volume average of tV ðrÞ over
V from Eq. (6). Setting dr ¼ dsV ðz;xÞdz, as for dr0 in nV ðx; rÞ, and with the area integral part directly

written sV ðz;xÞ, one obtains 3 for nV ðxÞ
3 In
nV ðxÞ ¼ � p
v

Z Dþ
V ðxÞ

D�
V ðxÞ

s00V ðz;xÞsV ðz;xÞdz ¼
p
v

Z Dþ
V ðxÞ

D�
V ðxÞ

ðs0V ðz;xÞÞ
2
dz ð10Þ
with the right-hand side term of Eq. (10) resulting from part integration, since sV ðD�
V ðxÞÞ ¼ sV ðDþ

V ðxÞÞ ¼ 0.

It is known from the Radon transform theory (Gel�fand et al., 1966) that, in R3, the x integral of
1

8p2

R Dþ
V ðxÞ

D�
V ðxÞ

ðs0V ðz;xÞÞ
2
dz over the unit sphere provides the v volume of the V domain, in terms of its sections

by planes, as
1

8p2

Z
X

Z Dþ
V ðxÞ

D�
V ðxÞ

ðs0V ðz;xÞÞ
2
dzdx ¼ � 1

8p2

Z
X

Z Dþ
V ðxÞ

D�
V ðxÞ

s00V ðz;xÞsV ðz;xÞdz
 !

dx ¼ v ð11Þ
the sense of generalised functions.
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This results, as recalled in Section 3, from the relation
4 T
5 T

(v ¼ 4
Z
XV ðrÞXV ðrÞdr ¼

Z
V
XV ðrÞdr ¼ v ¼ � 1

8p2

Z
X

Z Dþ
V ðxÞ

D�
V ðxÞ

s00V ðz;xÞsV ðz;xÞdz
 !

dx

¼ v
8p3

Z
X
nV ðxÞdx ð12aÞ
where XV ðrÞ is the characteristic function of the V domain (XV ðrÞ ¼ 1 for r in V and 0 if not). ThusR
X nV ðxÞdx ¼ 8p3, and, from Eq. (7a),

R
X wV ðxÞdx ¼ 1, as expected. Accordingly, one has
XV ðrÞ ¼ � 1

8p2

Z
X
s00V ðz;xÞdx ¼

Z
X
wV ðx; rÞdx ¼ 1 ð12bÞ
known (also to be addressed later on) as the inverse Radon transform of the XV ðrÞ characteristic function

of V . Conversely, the sV ðz;xÞ function is the Radon transform of XV ðrÞ. Eq. (12a) also writes
Z
XV ðrÞXV ðrÞdr ¼ lim

r0!0

Z
XV ðr

�
� r0ÞXV ðrþ r0Þdr

�
¼ v ð13Þ
which is the global covariance function of a V deterministic compact set, 4 at the r0 origin of the covariance

space, say CV ðr0 ¼ 0Þ.

2.2.1. Single inclusions

Application of what preceeds to inclusions of general shape needs to consider each geometric case

specifically. Ellipsoidal inclusions are the most particular cases of simply connected, convex centrosym-

metric, regular domains, which all derive from the sphere case by linear transform. For a spherical V in-

clusion of radius R, planar section areas normal to any x-direction identically write sV ðz;xÞ ¼ pðR2 � z2Þ,
such that s00V ðz;xÞ ¼ �2p, nV ðx; rÞ ¼ 2p2 ¼ nV ðxÞ, and wV ðx; rÞ ¼ 1

4p ¼ wV ðxÞ, independently on r in V and
on the x-direction. It is easily verified that for an ellipsoidal V inclusion of volume v
sV ðz;xÞ ¼
3v

4DV ðxÞ
1� z

DV ðxÞ

� �2
 !
and that s00V ðz;xÞ ¼ � 3v
2DV ðxÞ3

, still independently on the r position in V and of the z value along a given x-

direction. Thus, for ellipsoids
wV ðxÞ ¼
3

4p

� �2 v

3DV ðxÞ3

 !
Note that for any convex V domain, the integral
R
X

1

3DV ðxÞ3
dx over the unit sphere equals

R
X

R3
V � ðxÞ
3

dx ¼ v�,
i.e. provides the v� volume of the V � reciprocal convex body of V (Santalo, 1976), since by definition, the

distance (or radius vectors) function RV � ðxÞ of V � equals 1=DV ðxÞ, the inverse of the V support function. 5

Thus, for ellipsoids
wV ðxÞ ¼
RV � ðxÞ3

3v�
¼ 1

3v�DV ðxÞ3
Fig. 2 shows, for an ellipsoid, the shapes of the body, its support function, its weight function and its
reciprocal body. Normal directions to planar parts of the V surface, if any, correspond to vertices of the V �
he measure of V eroded by the union of the extremities of the r0 vector.

he vv� product fulfils 4=3!6 vv� 6 ð4p=3Þ2, the right- (respectively, left-) hand side equality holding for reciprocal ellipsoids

pabc=3; v� ¼ 4p=3abc) (respectively, for reciprocal polyhedra).



Fig. 3. From left to right, the V volume, its support function and its reciprocal V � domain (at same scale), for the cube

(maxðjx1j; jx2j; jx3jÞ ¼ 1), and for the octahedron (jx1j þ jx2j þ jx3j ¼ 1).

Fig. 2. From left to right, a V ellipsoid, its support function, weight function and V � reciprocal body, at same scale.
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reciprocal body. Convex polyhedra, as the cube and the octahedron shown in Fig. 3, are limit cases of

regular convex domains. Cuboidal inclusions of equation
P3

i¼1ðxiÞ
2n ¼ 1, for n 2 ½0:5;1½, of which the

drawn octahedron ðn ¼ 0:5Þ and cube ðn ¼ 1Þ are limit cases, will be considered in part 4, in comparison

to the (unit) sphere case (n ¼ 1).

2.2.2. Inclusion pairs

The Radon transform framework is valid for any type of regular bounded, possibly multiply connected,

V domains (i.e. groups of inclusions). Note that although not considered here, it also applies to unbounded

domains, the ‘‘area’’ of an infinite section needing to be thought of as a function of the intersecting plane

(Gel�fand et al., 1966).
One can in particular directly apply it to inclusion pairs, Vi , Vj, such that V ¼ Vi [ Vj and Vi \ Vj ¼ U, the

empty set Fig. 1c. Then, Eqs. (9a) and (10) become
nV ðx; rÞ ¼ �pðs00 ðz;xÞ þ s00 ðz;xÞÞ ð14aÞ
Vi Vj



6 O

592 P. Franciosi, G. Lormand / International Journal of Solids and Structures 41 (2004) 585–606
nV ðxÞ ¼ � p
v

Z Dþ
V ðxÞ

D�
V ðxÞ

ðs00Viðz;xÞ þ s00Vjðz;xÞÞðsViðz;xÞ þ sVjðz;xÞÞdz

¼ p
v

Z Dþ
V ðxÞ

D�
V ðxÞ

ðs0Viðz;xÞ þ s0Vjðz;xÞÞ
2
dz ð14bÞ
with v ¼ vi þ vj;DV ðxÞ being the support function of the convex hull of the inclusion pair, and the indi-

vidual sections of Vi (respectively, Vj) and their derivatives being zero when the V intersection with the z
plane is empty. Globally, nV ðxÞ ¼ ððvi=vÞnViðxÞ þ ðvj=vÞnVjðxÞÞ þ nVi ;VjðxÞ, which yields tV ¼ ðvi=vÞtVi þ
ðvj=ðvÞtVj þ tVi;Vj , with the same teðxÞ elementary operator involved as for a single inclusion. The nVi ;VjðxÞ
cross pair interaction term, and its related tVi;Vj operator, specified later on, corresponds globally to the two

involved (i=j) and (j=i) mean cross pair interaction operators in the inclusion pair problem, as treated for

example in Berveiller et al. (1987) for ellipsoidal inclusions. The cross pair interaction term in nV ðxÞ is only
non-zero in limited x-angular sectors (along x-directions for which z ¼ r � x planes intersect both inclu-

sions) which decrease with increasing distances between the inclusions. It has the property thatR
X nVi ;VjðxÞdx ¼ 0, since both x-integrals of nV ðxÞ and of

P
b¼i;jðvb=vÞnV bðxÞ equal 8p3 (due toR

XV ðrÞXV ðrÞdr ¼
P

b¼i;jð
R
XV bðrÞXV bðrÞ drÞ). Consider for example two V1, V2 inclusions, of O1 and O2 centres

at, respectively, �R and R distances of a O origin along some x0-axis, as exemplified in Fig. 4 for two

ellipsoids. Let us write accordingly tV andnV ðxÞ as tV x0 and nV x0ðxÞ, to indicate the x0 dependency of such

a V ¼ V1 [ V2 domain with regard to the relative inclusion positions. One can always write

nV x0ðxÞ ¼ nV0ðxÞ þ dnV x0ðxÞ (denoting nV0ðxÞ for
P

a¼1;2ðva=vÞnV aðxÞ), where
R
X dnV x0ðxÞdx ¼ 0. The

dnV x0ðxÞ term writes from (the last form of) Eq. (14b)
dnV x0ðxÞ ¼
2p

v1 þ v2

Z minðqþDV2 ;DV1�qÞ

maxðq�DV2
;�DV1

�qÞ
ðs0V1ðzþ q;xÞs0V2ðz� q;xÞÞdz ð15aÞ
with q ¼ R cosðx0;xÞ. For ellipsoids, s0V ðz;xÞ being z-linear, this gives, for q > 0 and for aP 1 in taking

DV1ðxÞ ¼ aDV0ðxÞ, DV2ðxÞ ¼ a�1DV0ðxÞ,
6 and with g ¼ z=DV0 and u ¼ q=DV0
dnV x0ðxÞ ¼
2pv1v2
v1 þ v2

�3

2DV0ðxÞ
2

 !2

DV0ðxÞ
Z g¼minðuþa�1;a�uÞ

g¼u�a�1

ðg2 � u2Þdg

¼ 8p3

v
CV1;V2ðxÞ

2
3a3

� �
for 0 < u < ða� a�1Þ=2

4u3

3
� uða2 þ a�2Þ þ 1

3
ða3 þ a�3Þ

� �
for ða� a�1Þ=2 < u < ðaþ a�1Þ=2

8<
:

ð15bÞ
CV1;V2ðxÞ ¼ 4p2DV0ðxÞðR
V1
1 ðxÞR

V1
2 ðxÞÞ

1=2ðRV2
1 ðxÞR

V2
2 ðxÞÞ

1=2
This is the same result as the one obtained for the ellipsoidal inclusion pair in Berveiller et al. (1987). If the

ellipsoidal geometry remains by far the simplest case for exact analytical resolution, with increasing but case

per case tractable complexity, non-ellipsoidal inclusion pairs or larger patterns can be treated similarly,

and a wV ðxÞ mean weight function be calculated from nV ðxÞ.
r similar expressions when q < 0 or for a6 1 in appropriately changing the integration intervals.
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Fig. 4. A pair of ellipsoidal inclusions V ¼ V1 [ V2, and angular (x, x0) sectors and zðxÞ intervals for the calculation of nV ðxÞ.
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2.2.3. Averages of inclusion pair positions

Statistically considering a set of relative positions of two V1, V2 inclusion centres that maps some closed,

centrosymmetric, S surface, a ðnV x0Þ
S
ðxÞ related average of nV x0ðxÞ over this S ‘‘pair position distribution’’

would write
ðnV x0Þ
S
ðxÞ ¼ 1

S

Z
S
ðnV0ðxÞ þ dnV x0ðxÞÞdSðx0Þ ¼ nV0ðxÞ þ ðdnV x0Þ

S
ðxÞ ð16aÞ
with, from Eq. (16a), and q now varying with x0, a mean cross pair interaction
ðdnV x0Þ
S
ðxÞ �

Z
X

Z zþðx0Þ

z�ðx0Þ
ðs0V1ðz

 
þ q;xÞÞðs0V2ðz� q;xÞÞdz

!
dSðx0Þ ð16bÞ
The related ðwV x0Þ
S
ðxÞ average weight function therefore shares into a wV0

ðxÞ average self-interaction term,

which is the one of a V0 inclusion for congruent inclusion pairs, or of the form
P

aðva=vwV aðxÞ otherwise,
and of a ðdwV x0Þ

S
ðxÞ average cross interaction term, both accessible to a geometrical calculation. We do not

here enter the question of existing S surfaces yielding a null mean cross pair interaction term, for inclusion

pairs of general V1, V2 shapes.

Note however, that from Eq. (16b) this is directly seen to be fulfilled for a pair of spherical inclusions
with respect to an isotropic (spherical) surface of constant R radius (dðx0Þ � dx08x0), noticing that the x0

integral then identifies to the x one, which is null. It is consequently also fulfilled, by linear transform, for

all ellipsoidal congruent V1 � V2 � V0 inclusion pairs over the inclusion-shape-homothetic ellipsoidal S � V0
surface. Furthermore, the property also directly appears to be fulfilled for any pair of (not necessarily

congruent) ellipsoids over such an isotropic S surface, since from Eq. (15b), one has, with

dx0 ¼ d cosðh0Þd/0 ¼ dqd/0

R ¼ DV0 ðxÞ du d/0

R , and the /0 integral only contributing 2p
ðdnV x0Þ
S
ðxÞ �

Z ða�a�1Þ=2

0

2

3a3

� �
du

 
þ
Z ðaþa�1Þ=2

ða�a�1Þ=2

4u3

3

�
� u
�
a2 þ a�2

�
þ 1

3

�
a3 þ a�3

��
du

!
¼ 0 ð17Þ
This consequently holds for any pair of ellipsoidal inclusions over any ellipsoidal S surface.

The cases of more general shapes could be addressed in following a similar way. For example, from Eq.

(17), a pair of ellipsoids appear to behave as a sphere pair with regard to the x0-integration at fixed x value.

This suggests the property of null mean pair cross interaction term to be in general fulfilled for S surfaces,
if any, that would make the V1, V2 inclusion pair seen as a sphere pair upon x0-integration.
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2.3. Explicitation of the elementary operator

Each teðxÞ ¼ teðh;/Þ elementary operator in tV ðrÞ from Eq. (6) is an axi-symmetric operator, defined in

reference to the parallel planes of x normal direction in some reference medium frame. This operator is of
since long identified characteristics, among which is the identity with the operator of infinitely flat oblate

spheroids (platelets) of same x orientation of its small axis (Walpole, 1967; Kinoshita and Mura, 1971). The

M tensor in Eq. (4) is the tensor which governs the propagation velocity of plane harmonic waves

(Christensen, 1979). For general elasticity anisotropy, considering the (0,0) oriented te (0,0) elementary

operator for ðh;/Þ ¼ ð0; 0Þ, the only non-zero terms from Eq. (7b) correspond to x ¼ ð0; 0; 1Þ, and the Mmp

coefficients identify to the Cm3p3 elastic moduli of the infinite medium, for C expressed in the operator axes

frame, that we can momentarily denote Cð0;0Þ. In this frame, M is therefore a 3 · 3 symmetric sub-matrix of

Cð0;0Þ, which is given Table 1. Thus, the tep3j3 (0,0) non-zero terms of the te (0,0) operator expressed in the
operator frame make a symmetric 3· 3 matrix as well, that we denote Dt, and they are linked to the Npj

terms of the inverse N ¼ M�1 tensor as also given Table 1.

The N tensor is known as the tensor of Kelvin–Christoffel stiffnesses (Walpole, 1981). The elementary

operators take this form (of a non-zero Dt block) when expressed in their specific frame, and in terms of the

C elasticity moduli expressed in this frame as well. 7 When C is defined in some (0,0) reference frame as

Cð0;0Þ, the appropriate Cðh;/Þ moduli in the teðh;/Þ operator frame are obtained, by using the Rðh;uÞ rotation
matrix given in Table 2. Now, since one needs to express all the teðh;/Þ elementary operators in a same

matrix frame to calculate tV (r) in this frame, the one within which C is denoted Cð0;0Þ say, the expression, in
this frame, of any (h;/)-oriented elementary operator is obtained in using the inverse R�1ðh;uÞ ¼ Rtðh;uÞ
rotation matrix.

For elastic isotropy, since in all frames C3333 ¼ kþ 2l ¼ 2lð1� mÞ=ð1� 2mÞ ¼ ðK þ 4lÞ=3 and

C1313 ¼ C2323 ¼ l, the C frame identification is made useless. The non-zero terms of Dt are N11 ¼ 1=C1313,

N22 ¼ 1=C2323, N33 ¼ 1=C3333, and those of teðh;/Þ in the (h;/) operator frame are t3333 ¼
1�2m

2lð1�mÞ ¼ 3
Kþ4l ¼ 1

l � 1
2lð1�mÞ ¼ a, tðð2;3Þ;ð2;3ÞÞ ¼ tðð3;1Þ;ð3;1ÞÞ ¼ 1

4l ¼ b, for all (h;/) orientations. In reference to a

same (0,0), frame, the teðh;/Þ ¼ teðxÞ operators thus rearrange as
7 T

rotatio

matrix
tepqjnðxÞ ¼ adapqjnðxÞ þ bdbpqjnðxÞ ð18aÞ
with the da and db (elasticity independent) operators writing
dapqjnðxÞ ¼ ðxjxpxnxqÞjðp;qÞ;ðj;nÞ; dbpqjnðxÞ ¼ 4 Djp

��
� xjxp

�
xnxq

�
jðp;qÞ;ðj;nÞ ð18bÞ
The identity of form of the elementary teðxÞ operator and of the tPðxÞ platelet operator of same small axis

orientation, can be simply established in considering two-phases laminate structures, as recalled in Ap-

pendix A, the material layers being considered as infinitely flat spheroids. This can also be directly assessed,
in denoting that the weight function wPðxÞ � 1

DpðxÞ3
of a x-oriented platelet, seen as a flattened spheroid, is

zero in any direction but x where it is infinite (since DpðxÞ ! 0 while Dpðx0 6¼ xÞ ! 1), what defines,

together with a unit value of the weight function integral over the unit sphere, a delta-like function on

the unit sphere, say
tPðxÞpqjn ffi
Z
X
tepqjnðx0Þdðx0 � xÞdx0 ¼ tepqjnðxÞ; with dðx0 � xÞ ¼ dðcos h0 � cos hÞdð/0 � /Þ ð19Þ
he axisymmetry of the elementary operators is verified fromM in Table 1, the constitutive Cmoduli of which do not change for a

n around the 3 axis (i.e. the x-direction) but only rotates accordingly. On the contrary, when the x-direction is changed, the C

block constitutive of M changes as well.



Table 1

Left: expression of the M matrix, with the Cð0;0Þ medium moduli; right: the general Dt non-zero part of the te (0,0) operator, both

expressed in the operator frame

M ¼
C1313 C1323 C1333

C1323 C2323 C2333

C1333 C2333 C3333

������
������
0;0

; Dt ¼
t1313 t1323 t1333
t1323 t2323 t2333
t1333 t2333 t3333

������
������ ¼

N11

4
N12

4

N13

2
N12

4
N22

4
N23

2
N13

2

N23

2
N33

������
������

Table 2

Rðh;uÞ rotation matrix from some (0,0) reference frame in ðh;uÞ and ðx1;x2;x3Þ notations

Rðh;uÞ ¼
� cosðhÞ cosðuÞ sinðuÞ sinðhÞ cosðuÞ
� cosðhÞ sinðuÞ � cosðuÞ sinðhÞ sinðuÞ

sinðhÞ 0 cosðhÞ

������
������ ¼

�x1x3=ð1� x2
3Þ

1=2 x2=ð1� x2
3Þ

1=2 x1

�x2x3=ð1� x2
3Þ

1=2 �x1=ð1� x2
3Þ

1=2 x2

ð1� x2
3Þ

1=2
0 x3

�������
�������
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The teðxÞ operators are now on denoted tPðxÞ, although teðxÞ is in fact the limit of the platelet operator form

when its thickness to diameter ratio tends to zero. Note that among remaining differences that may matter

according to specific situations, the platelet operator remains invertible while teðxÞ is not.
3. Inclusion problems from the Radon transform method

Using wV ðx; rÞ from Eq. (9b), the tV ðrÞ modified Green operator integral at r points of a V domain given
in Eq. (6) and its tV mean value over V have the inverse Radon transforms
tVpqjnðrÞ ¼
Z
X
tP ðxÞpqjn wV ðx; rÞdx ¼ � 1

8p2

Z
X
tPðxÞpqjn s

00
V ðz;xÞdx ð20aÞ

tVpqjn ¼
Z
X
tPðxÞpqjn wV ðxÞdx ¼ � 1

8p2

Z
X
tPðxÞpqjn

1

v

Z Dþ
V ðxÞ

D�
V ðxÞ

s00V ðz;xÞsV ðz;xÞdz
 !

dx ð20bÞ
This is next used in inclusion problems resolution, after few recalls about the Radon transform.
3.1. The Radon transform elementary properties

For any scalar or tensorial function qðrÞ entirely summable over R3, the Radon transform RT½qðrÞ� is
defined (Gel�fand et al., 1966) as the integrals of qðrÞ over the z ¼ x � r planes, that we will here denote

RT½qðrÞ� ¼ Qðz;xÞ. When qðrÞ is defined over some bounded V region, say qV ðrÞ, the Radon transform

RT½qV ðrÞ� is defined as the integrals of qV ðrÞ on the sV (z,x) sections of V by the z ¼ x � r planes, to be here

denoted QSV ðz;xÞ, say
QSV ðz;xÞ ¼
Z
V
qV ðr0Þdðx � ðr� r0ÞÞdr0 ¼

Z
sV ðz;xÞ

qV ðr0 jx � r0 ¼ zÞdsðz;xÞ ð21Þ
By definition as well, the inverse Radon transform conversely yields qV ðrÞ as
qV ðrÞ ¼ � 1

8p2

Z
X
QS00V ðz;xÞdx ð22Þ
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with QS00V ðz;xÞ the second z-derivative of QSV ðz;xÞ. When qV ðrÞ ¼ XV ðrÞ, QSV ðz;xÞ ¼ sV ðz;xÞ, and Eq. (22)

yields Eq. (12b). Similarly the expression given in Eq. (12a) of the v volume of some V bounded domain of

R3 in terms of its sections by planes corresponds to a more general relation between a pair of hðrÞ and qðrÞ
summable functions over R3 and their Hðz;xÞ, Qðz;xÞ Radon transforms, which is analogous to the
Plancherel theorem writing
8 W
Z
hðrÞ : qðrÞdr ¼ � 1

8p2

Z
X

Z þ1

�1
Hðz;xÞ : Q00ðz;xÞdz

� �
dx

¼ � 1

8p2

Z
X

Z þ1

�1
H00ðz;xÞ : Qðz;xÞdz

� �
dx ð23Þ
or similarly for hV ðrÞ and qV ðrÞ functions defined over V . 8 When hV ðrÞ ¼ qV ðrÞ ¼ XV ðrÞ, Eq. (23) yields
Eq. (12a) giving v. Furthermore, since the Radon transform RT½hðrÞ; qðrÞ� of a ðh; qÞðrÞ convolution writes
RT

Z
hðr

�
� r0Þ : qðr0Þdr0

	
¼
Z þ1

�1
Hðz� z0;xÞ : Qðz0;xÞdz0 ð24Þ
it comes, from nV ðx; rÞ in Eq. (8), that the inverse Radon transform of Cðr� r0Þ writes
Cðr� r0Þ ¼ � 1

8p2

Z
X
tPðxÞd00ðz� z0;xÞdx ð25Þ
Its integral over a V domain yields Eq. (20a) according to Eqs. (23) and (24), with hðr� r0Þ ¼ Cðr� r0Þ and
qðrÞ ¼ XV ðrÞ. Removing tPðxÞ from the right-hand side of Eq. (25) yields the plane wave expansion of the

dðr� r0Þ function.
The Radon transform method provides a formally simple calculation of the tV ðrÞ modified Green

operator integral related to a V general bounded domain shape, and of its tV average over V , based on a

geometric characterisation of V . It is expected helpful in further manipulations of such operators which are

essential in the resolution of the ‘‘inclusion’’ problem, and related ones, and this geometrical viewpoint may

also help in differently seek for relevant resolution approximations, as next commented.

3.2. Application to the Eshelby inclusion problem

The now classical Eshelby problem of an isolated inclusion (or inhomogeneity) of CI elasticity moduli in

an infinite medium of C moduli supporting the E strain applied from infinity ends to solve an integral

equation of the form, with DC ¼ CI � C and eV ðrÞ the strain field in V
eV ðrÞ ¼ E�
Z

Cðr� r0Þ : DCXV ðr0Þ : eV ðr0Þdr0 ð26aÞ
In using DCXV ðrÞ : eV ðrÞ ¼ DC : eV ðrÞ ¼ qV ðrÞ : E ¼ pV ðrÞ, Eq. (26a) becomes
qV ðrÞ ¼ DC : IXV ðrÞ �
Z
V
Cðr� r0Þ : qV ðr0Þdr0

� 	
ð26bÞ
Considering only the mean polarisation fields over V , which are enough to obtain the mean stress and strain

fields in the V domain, Eq. (26b) yields, introducing tV ðrÞ
qV ¼ 1

v

Z
V
qV ðrÞdr ¼ DC :

I

v

Z
V
XV ðrÞdr

�
� 1

v

Z
V
tV ðrÞ : qV ðrÞdr

	
ð26cÞ
ith a z-integral over the 2DV ðxÞ breadth of V then.
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For problems where the polarisation field in V is uniform, qV say, the classical solution simply writes
qV ¼ ½½DC��1 þ tV ��1 ¼ TV ð27Þ
in terms of the tV mean Green operator integral over V . The tV expression provided by Eq. (20b) can

therefore be directly used in Eq. (27). This type of solution is also generally used for non uniform qV ðrÞ
fields, under the so-called mean field approximation, which amounts to a priori replace qV ðrÞ by its mean

value in the right hand side of Eq. (26c) (i.e. to approximate the ðC; qV ÞV average over V of the right-hand

side ðC; qV ÞðrÞ convolution in Eq. (26b) by tV : qV Þ, to directly write, instead of Eq. (26c)
qV ¼ 1

V

Z
V
qV ðrÞdr ¼ DC :

I

v

Z
V
XV ðrÞdr

�
� 1

v

Z
V
tV ðrÞdr

� �
: qV

	
¼ DC : I

h
� tV : qV

i
ð28Þ
In Eq. (28), the underbar indicates that qV is an approximation, in general differing from the exact qV mean

field solution. This qV solution yields the mean strain over V as eV ¼ ½DC��1
: qV : E ¼ AV : E, and from

it the mean stress rV ¼ CI : eV , with
qV ¼ ½½DC��1 þ tV ��1 ¼ TV ¼
Z
X

½DC��1
h�

þ tP ðxÞ
i
wV ðxÞdx

��1

ð29aÞ

AV ¼ ½Iþ tV : DC��1 ¼
Z
X

I

�

þ tPðxÞ : DC
�
wV ðxÞdx

��1

ð29bÞ
and similarly for the uniform field in ellipsoids, as a special case of uniform qV ¼ TV ¼ DC : AV operators,

when wV ðxÞ is uniform.

The Radon transform method is in these cases of use to calculate tV , for any type of V bounded domain,

from geometrical considerations aiming to calculate (exactly or approximately) the wV ðxÞ mean weight

function. As seen in part 2, if V is multiply connected (i.e. a group of inclusions), pair interaction terms are

formally contained in wV ðxÞ, this whether the relative pair positions of neighbouring inclusions in such a

group are fully explicited or are treated in some statistical average. Therefore, as an alternative to separately

consider Vi individual domains (of a given phase) and individually approximating them as ellipsoids to
simplify calculations (which remain complicated if pair interactions are accounted for), a global ‘‘estimate’’

of wV ðxÞ, for V taken as the union of the Vi set, can be relevant, according to the problem of concern.

In the general case represented by Eq. (26b), the resolution from the Radon transform method, using

appropriately Eqs. (20)–(25), needs the inverse Radon transform of each term, to write
QS
00
V ðz;xÞ ¼ DC : Is00V ðz;xÞ

 
� o2

oz2

Z Dþ
V ðxÞ

D�
V ðxÞ

Pðz
 

� z0;xÞ : QsV ðz0;xÞdz0
!!

ð30Þ
where the Radon transform of the ðC; qV ÞðrÞ convolution is written
RT

Z
Cðr

�
� r0Þ : qV ðr0Þdr0

	
¼
Z Dþ

V ðxÞ

D�
V ðxÞ

Pðz� z0;xÞ : QsV ðz0;xÞdz0 ð31Þ
Pðz� z0;xÞ stands for the Radon transform of Cðr� r0Þ, the P00ðz� z0;xÞ second z-derivative of which is

given by Eq. (25), and QsV ðz;xÞ for the one of qV ðrÞ. This is formally allowed although the Cðr� r0Þ is not a
locally summable function everywhere (due to its singularity at r0 ¼ r), in the sense of generalised functions,

and where, furthermore, Cðr� r0Þ is to be understood as its ‘‘regularised form’’. This means the well known

decomposition of Cðr� r0Þ into a delta function concentrated at r, the local part, and the complementary
non-local part, everywhere coinciding with Cðr� r0Þ except in an infinitesimal neighbourhood of r, V e say,

where it is zero. Typically, integrating Eq. (25) over the whole space, i.e., integrating over a sphere of
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infinite radius centred at r, yields the modified Green operator integral given by tV ðrÞ in Eq. (2) when V is a

sphere, tS say. Being invariant with respect to the sphere size, this operator also corresponds to an infin-

itesimal V Se sphere around r, and the local part of Cðr� r0Þ therefore is tSdðr� r0Þ, while the CSðr� r0Þ non-
local operator part has a zero integral over the whole space. This regularised form of Cðr� r0Þ is not unique
since the r point can be isolated by an infinitesimal surrounding volume of any V shape, in which case

Cðr� r0Þ ¼ tV ðrÞdðr� r0Þ þ CV ðr� r0Þ. The CV ðr� r0Þ integral over the whole space is not zero then, and it is

uniform when V is ellipsoidal. Taking v ¼ r�r0

jr�r0 j, and IV e equal to zero inside V e (i.e. for r� r0 < eV ðvÞ) and 1

if not, this decomposition writes
Cðr� r0Þ ¼ tV ðrÞdðr� r0Þ þ IV eCðr� r0Þ
Note that the usual decomposed form of Cðr� r0Þ, written EV ðrÞdðr� r0Þ þ FV ðvÞ 1

jr�r0 j3 is retrieved when

Eq. (25) is reformulated as
Cðr� r0Þ ¼ � 1

8p2

Z
X
tPðxÞd00ðx � ðr� r0ÞÞdx ¼ � 1

4p

Z
X

tP ðxÞ

2p
2dðx � vÞ
ðx � vÞ2

dx

 !
1

jr� r0j3
the X integral within brackets reducing to an integral over a Cðv) unit circle around the v-direction, since
non-zero terms are those for which x � v ¼ 0.

Therefore, in any choice of V e, the expression of Cðr� r0Þ from Eq. (25) does account for both the local

and the non-local part. However, this remarkably simple form of Cðr� r0Þ, which simply allows to explicit

the tV ðrÞ operator provided the knowledge of appropriate geometrical characteristics of V , does not allow
the economy of separating these local and non-local parts for treating the inclusion problem(s) more

precisely than within the mean field approximation above recalled.
Entering these developments here would drive us too far from our main topic, which is the (exact or

approximate) determination of wV ðxÞ from geometrical consideration. Further discussion of the resolution

of the inclusion problem from the Radon transform method will therefore be delayed to a separate pre-

sentation.

Remaining in the mean field approximation context, a few additional comments are reported in the next

part, with regard to the use of the Radon transform expression of the modified Green operator integrals in

simple cases of effective moduli estimates. Let us call qV ¼ TV the exact solution of the inclusion problem,

differing from the TV mean field approximation unless for single V ellipsoids where TV ¼ TV ¼ TV .
3.3. Application to effective elasticity moduli estimates for inclusion reinforced matrices

There are many different approaches of this effective moduli estimate problem for heterogeneous ma-

terials, in general making use of approximations in the resolution procedure, and we cannot either enter this

difficult question here. We just aim to point out that the Radon transform method can be an interesting new
way to approach these problems, with regard to inclusion shapes on the one hand, and also with regard to

the characteristic shapes of their spatial pair position distributions. We limit our discussion to two-phase

inclusion matrix structures.

For a f volume fraction of Vi inclusions of all same CI moduli (not necessarily shape-identical at this

point) in the infinite C medium, Eq. (26a) is generally said to hold, with an integral over a RV ‘‘repre-

sentative material volume’’, if taking the modified Green operator to act on (pV ðrÞ � p�) (Walpole, 1981;

Willis, 1981), where p� is the volume average of pV (r) over RV , and a priori taking for V all the Vi inclusions
in RV . Under this condition, the E strain is replaced by EoðrÞ ¼ Eþ ð

R
RV Cðr� r0Þdr0Þ : p� ¼ Eþ tRV ðrÞ : p�.

In denoting Eo the volume average of Eoðr) over V , and setting then pV ðrÞ ¼ qoV ðrÞ : Eo together with

p� ¼ qo� : Eo, provides the relations (for r 2 V � RV )
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Eo ¼ ½I� ðtRV ÞV : qo���1
: E; EoðrÞ ¼ ðIþ DtRVV ðrÞ : qo�Þ : Eo ð32aÞ
with
ðtRV Þ
V
¼ 1

V

Z
V
tRV ðrÞdr; DtRVV ðrÞ ¼ tRV ðrÞ � ðtRV ÞV ð32bÞ
Solving Eq. (26a), where EoðrÞ replaces E, with respect to the Radon transform of qoV ðrÞ, yields
QoS
00
V ðz;xÞ ¼ DC : ðIs00V ðz;xÞ þ As00V ðz;xÞ : qo�Þ � DC

:
o2

oz2

Z Dþ
V ðxÞ

D�
V ðxÞ

Pðz
 

� z0;xÞ : QosV ðz0;xÞdz0
!

ð33Þ
instead of Eq. (30), with AS00V ðz;xÞ standing for the second z-derivative of the Radon transform of DtRVV ðrÞ
As00V ðz;xÞ ¼ tP ðxÞ s00RV ðz;xÞ
 

� 1

v

Z Dþ
V ðxÞ

D�
V ðxÞ

s00RV ðz0;xÞsV ðz0;xÞdz0
!

¼ tPðxÞ nRV ðx; rÞ
�

� ðnRV ÞV ðxÞ
�

ð34Þ
Denoting from Eq. (34) that 1
v

R Dþ
V ðxÞ

D�
V ðxÞ

AS00V ðz;xÞsV ðz;xÞdz ¼ 0 8x, averaging over V will provide an exact

mean qoV value expression identical to the exact qV solution related to the isolated V domain. It will

therefore formally come for qV now related to a f volume fraction of V domains, or of Vi inclusions, in
the matrix, and for the related Ceff material effective moduli
pV ¼ TV : Eo ¼ TV :
h
I� ðtRV ÞV : qo�

i�1

: E ¼ qV : E; Ceff ¼ Cþ f qV ð35Þ
As for the isolated inclusion problem, an approximate mean qoV solution can be obtained in approximating

the ðC; qoV ÞV average of the ðC; qoV ÞðrÞ convolution by tV : qoV . According to what preceeds, qoV ¼ TV

defined from Eq. (29a), what thus yields the qV and Ceff approximate solution
pV ¼ TV : Eo ¼ TV :
h
I� ðtRV ÞV : qo�

i�1

: E ¼ qV : E;Ceff ¼ Cþ f qV ð36Þ
with the corresponding qo� (and thus Eo) average fields. Since qoV ðrÞ is zero out of V , its average over RV ,
as introduced in Eqs. (32), must write
qo� ¼ f
V

Z
V
qoV ðrÞdr ¼ f qoV ¼ fTV ð37aÞ

qo� ¼ f
V

Z
V
qoV ðrÞdr ¼ f qoV ¼ fTV ð37bÞ
 

 

 

 

 

P(RS(ω))=c
st 

RV0 
P(RV0)
0

= –

RVL 
P(RVL) = f

RVL 
P(RVL) = f

R ( ) S

. A RV representative volume (drawn around two inclusions) as a limit position correlation length, and homothetic

ÞÞ ¼ cst surfaces, for a uniform distribution of Vi identical inclusions.



600 P. Franciosi, G. Lormand / International Journal of Solids and Structures 41 (2004) 585–606
when, respectively, considering the exact solution and the mean field approximation. As set, the only

difference between approximate and exact resolutions is expected to come from the difference of TV from

TV .

Now, both the ðtRV ÞV and TV (respectively, TV ) operators contributing in qV (respectively, in qV ), a priori
depend on the relative pair positions of the Vi inclusions, both through V and through RV . V can be a

particular pattern or a statistically specified inclusion arrangement. The S surfaces of section 2 can be seen

as representing surfaces of constant conditional probability PðRSðxÞ) to find an inclusion centre at a RSðxÞ
distance from some inclusion centre taken as origin (Ponte-Castaneda and Willis, 1995; Bornert et al.,

1996). In this case RV can be seen as the characteristic shape of a uniform position pair distribution for the

Vi inclusions, as simplistically exemplified in Fig. 5, for all identical inclusions: around any inclusion, from

statistical homogeneity, RV specifies homothetic S surfaces such that P ¼ 08RðxÞ6RS0ðxÞ, and

P ¼ f 8RðxÞPRSLðxÞ. Space filling is only realisable then, when the Vi inclusions are congruent and
congruent to RV as well. 9 We limit ourselves to the following comments about ðtRV ÞV in the context of the

mean field approximation for which TV has been shown accessible to a calculation from the mean weight

function characteristic of V .
For general RV shapes, the inverse Radon transform of ðtRV ÞV yields
9 T
ðtRV ÞV ¼
Z
X
tPðxÞ

1

V

Z Dþ
V

D�
V

wRV ðx; rÞsV ðz;xÞdz
 !

dx ¼
Z
X
tP ðxÞðwRV Þ

V ðxÞdx ð38Þ
As tV , ðtRV ÞV takes the form of a weighted average of the elementary tP ðxÞ operators. But the weight function

of the RV domain is involved in terms of its ðwRV Þ
V ðxÞ average over its V sub-domain, unless for ellipsoidal

RV shapes, for which one has, 8V � RV and 8r 2 V , wRV ðx; rÞ ¼ wRV ðxÞ, and ðtRV ÞV ¼ tRV ¼ tRV ðrÞ (thus
EoðrÞ ¼ Eo). Otherwise, ðwRV Þ

V ðxÞ remains dependent on the spatial arrangement of the Vi inclusions that
constitutes V in RV , either for a given pattern, or for a statistically defined position distribution. However,

since by definition RV � V 	 Vi , one can see RV as nearly the convex hull of V 	 Vi , such that

DV ðxÞ 
 DRV ðxÞ) in Eq. (38) while, in average over all realisations of a same RV inclusion position dis-

tribution, statistical homogeneity allows to take sV ðz;xÞ 
 fsRV ðz;xÞ. This would give ðwRV Þ
V ðxÞ 
 wRV ðxÞ

and ðtRV ÞV 
 tRV , i.e. a f and V -independent ‘‘global distribution effect’’. Approximations of tRV can be

thought off in the same way as for tV , i.e. from approximations of the wRV ðxÞ mean weight function.

The approximate qV solution finally writes
qV ¼ TV : I
h

� f ðtRV ÞV : TV
i�1

¼ ð1
�

� f Þ½TV ��1 þ f ½DC��1
�

þ tV � ðtRV ÞV
�	�1

ð39aÞ


 ð1
h

� f Þ½TV ��1 þ f ½DC��1
�

þ tV � tRV
�i�1

ð39bÞ
Involving two mean operators which can be geometrically calculated.

3.4. Concluding remarks on the use of the Radon transform in inclusion problems

The Radon transform method proves of interest at least in inclusion problems resulting in (or reduced

to) the calculation of mean operators related to particular inclusion or domain shapes when these operators

can be decomposed, as the mean Green operator integrals for these domains, as a weighted average over an

angular distribution of elementary operators. Extended usefulness in broader contexts will be presented in
ogether with a fractal size distribution of the inclusions down to infinitesimal. Otherwise fmax < 1.
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forthcoming work. As a first step, the present paper mainly aims to stress that, as far as such mean ope-

rators are sufficient in the problem of concern, they can be obtained from the (exact or approximate)

calculation of the wV ðxÞ mean weight function(s) characteristic of the involved V domain(s), what can be

performed from geometrical considerations. Section 4 exemplifies such mean weight function calculations
for simply connected, convex centrosymmetric, non-ellipsoidal domains, and discusses relevant approxi-

mations, when necessary, in comparison to a ‘‘best ellipsoidal fitting’’ of the domain shapes.
4. Mean weight function approximations for non-ellipsoidal inclusions

The exact wV ðxÞ weight function for V ellipsoids is analytically given from the DV ðxÞ support function
as ðR3

V � ðxÞ=3v�Þ, with RV � ðxÞ ¼ 1=DV ðxÞ. Exact calculations of the mean wV ðxÞ weight function (or of the

wV ðx; rÞ function field in V ) for general V inclusions can be more or less tediously obtained when the

inclusion shape is analytically specified by a P ðrÞ ¼ 0 function, or under parametric forms. Planar section

areas of such domains in all spatial directions, and then the required derivatives, can be at least numerically,

but also analytically in certain cases, determined such as to precisely obtain wV ðxÞ. They can also be ob-

tained from 3D analyses of experimental data, from X-ray tomography for example. The ellipsoidal ap-
proximation of non-ellipsoidal V inclusion shapes that is introduced in inclusions or homogenisation

problems for simpler analytical resolutions, corresponds to approximate the exact wV ðxÞ mean weight

function of V , by the weight function of the ‘‘closest’’ Ve ellipsoidal shape (from a least square method for

example), say taking wV ðxÞ 
 wVeðxÞ ¼ R3
Ve� ðxÞ=3ve�. For inclusion shapes such as the ones illustrated in

Fig. 1a and b the best ellipsoidal fit remains a rough approximation, and better approximations of wV ðxÞ
can be figured out. In the particular class of convex, not necessarily centrosymmetric, V domains, an ex-

pected better approximation in many cases could be to use the support function of V , to approximate

wV ðxÞ as 
 ~wwV ðxÞ ¼ 1=ð3v�D3
V ðxÞÞ ¼ R3

V � ðxÞ=ð3v�Þ (in reference to the V � reciprocal body of V , and withR
XðR3

V � ðxÞ=3v�Þdx ¼ 1Þ. Considering for example both the cube and the octahedron exemplified in Fig. 3,

and also all the intermediate cuboidal shapes of equation
P3

i¼1ðxiÞ
2n ¼ 1, with 0.5 (octahedron) 6 n61

(cube), the sphere (n ¼ 1) would be the ‘‘best’’ ellipsoidal approximation for all of them. Both the exact

wV ðxÞ mean weight function and its ~wwV ðxÞ ‘‘support function approximation’’ can be calculated for

the cube and the octahedron, respectively from analytical expressions of all their section areas for wV ðxÞ
(see Appendix B), and from their support functions for ~wwV ðxÞ, which respectively write

DðxÞ ¼ jx1j þ jx2j þ jx3j, and DðxÞ ¼ maxðjx1j; jx2j; jx3jÞ, in the x-direction. Since they are the oppo-

sitely farthest convex centrosymmetric shapes from the sphere, the exact wV ðxÞ mean weight functions of
these shapes are expected to exhibit the largest difference with their related ~wwV ðxÞ approximation. These

exact and approximate weight function for the cube and the octahedron are compared in Fig. 6, which

shows that, although the support function approximation provides a smoother weight function than the

exact mean one, it is obviously much better than using the weight function of the ‘‘best fitting’’ ellipsoid,

which in the present case is the sphere.

The comparison of the corresponding exact tV and approximate ~ttV calculations of the mean modified

Green operator integral is performed in the case of isotropic elasticity. In this case, from Eq. (18a), the tPðxÞ

elementary operators share into two adaðxÞ þ bdbðxÞ parts, related to the two independent (a ¼
ð1� 2mÞ=½2lð1� mÞ�, b ¼ 1=4l) constant terms. These two parts can be integrated separately from Eq. (20b)

as daV ¼
R
X d

aðxÞwV ðxÞdx, (respectively, dbV ), for tV ¼ adaV þ bdbV , or as ~ddaV ¼
R
X d

aðxÞ ~wwV ðxÞdx, (respec-
tively, ~ddbV ), for ~ttV ¼ a~ddaV þ b~ddbV , regardless of the elasticity moduli values in (a; b). In the main symmetry

axes of the considered shapes, all these operators reduce to three ðiiiiÞ; ðiijjÞ; ðijijÞ components and, noticing

that daðxÞiijj ¼ daðxÞijij , both tV and ~ttV involve only five different terms here calculated for the cube and the

octahedron. For the n-cuboidal shapes, they have also been calculated for ~ttV , but not for tV since only their



Fig. 6. wV ðxÞ exact and ~wwV ðxÞ approximate mean weight functions for the octahedron and the cube, at same scale (the conical

branches of wV ðxÞ are truncated).
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~wwV ðxÞ approximate weight function is easily at analytical hand, 10 from their support function which writes
10 T

xixi ¼
is give
DðnÞðxÞ ¼
X3
i¼1

xi2n=ð2n�1Þ

 !ð2n�1Þ=2n

ð40Þ
The so-obtained five terms of ~ttV are plotted in Fig. 7 with respect to N ¼ ð2n� 1Þ=2n which ranges from 0

(octahedron) to 1 (cube). For these limit cases, as well as for the sphere (N ¼ 0:5), the five different terms of

tV are also plotted. Since the ~ttV approximation of tV is, for this family of shapes, the worst for the limit cases

of the cube and the octahedron, the Fig. 7 shows that this approximation is good for both limit shapes and

consequently it can be expected good as well for all intermediate cuboidal ones. The ~ttV approximation of tV

is obviously better than the ‘‘best ellipsoidal’’ approximation, which here is the sphere tS uniform operator

(tSiiii � tSiijj ¼ 2tSijij).
It is thus shown that the approximate calculation of the cuboids mean weight function from their

support function is close enough to the exact one in the whole range between the octahedron and the cube,

to provide a good approximate of the mean Green operator integral over inclusions of such shapes. This

can be used to approximate all operators also having an inverse Radon transform on that same shape-

characteristic mean weight function.

The exemplified case of cuboidal inclusions extends to more general cuboids by the same linear trans-

form as for the sphere into an ellipsoid. All these non-ellipsoidal convex centrosymmetric shapes already

allow to cover a much larger range of particle or void shapes that can be encountered in real materials, than
ellipsoidal shapes only. For example, cuboidal inclusions of equation

P3

i¼1ðxiaiÞ
2n ¼ 1 are characteristic of c0

precipitates in various c=c0 superalloys (Estevez et al., 1995), and different c=c0 alloys exhibit cuboids of

various (n) smoothness or (ai) anisotropic main dimensions. Their volume fraction is generally larger than

the maximal allowed concentration of size-identical ‘‘best fitting’’ ellipsoids, what prohibits the ellipsoidal

approximations, unless admitting an irrelevant fractal size distribution of precipitates.
he equation of the intercept of a n-cuboid V with a kðxÞ plane of x normal unit vector at the distance kðxÞ from the origin i.e.

kðxÞ, writes k
x3

¼ x1x1
x3

þ x2x2
x3

� ð1� x2n1 � x2n2 Þ
1
2n, and its area has no (or no simple) analytical expression. But the DV ðxÞ breadth

n by kðxÞmax, solving the conditions ok=oxi ¼ 0 for i ¼ 1; 2, what provides the support function of Eq. (40).
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From the given cuboidal examples, it likely holds for many convex, non-necessarily centrosymmetric,
domains, that the ~wwV ðxÞ mean weight function approximation from the support function of the inclusion

captures the main inclusion shape effect on the modified Green operator integral (and on related operators),

and that this approximation is more accurate than an ellipsoidal approximation of the shape. One addi-

tional advantage of using the support function of a V domain (when convex) to approximate wV ðxÞ by
~wwV ðxÞ is that non-analytically defined convex domains which are defined from sets of analytically defined

ones, such as being for example the convex hull, or the dilatation, of several domains, still have simply

defined support functions. 11 This is only an example of approximation, of use for an important shape set.

If not precise enough, or not valid, for particular convex inclusions or for non-convex ones, or for more
general V bounded domains (inclusion patterns), approximations of the mean weight function can still be

considered in appropriate manner with regard to the geometry, in order to both preserve the possibility of

analytical calculations and a realistic description of the inclusion shapes and arrangements of concern. Such

approximations concerning the mean weight function characteristics of general bounded domain shapes

(from the domain support function or from any other more appropriate geometrical considerations), are

expected to improve the behaviour estimate of matrices reinforced with inclusions (or weakened by voids)

far from ellipsoids, since the inclusion shape acts at first order of the inclusion volume fractions in homo-

genisation calculations. This constitutes a first order improvement in many modelling contexts. An ellip-
soidal approximation of a non-ellipsoidal inclusion position distribution symmetry is more acceptable since

it acts at second order of the inclusion volume fractions. But in the superalloy example, position distri-

butions of cuboidal precipitates are closer to an inclusion shape homothetic distribution than to an

ellipsoidal one. Although the cases of inclusion spatial position distributions of non-ellipsoidal symmetry

still deserve specific care, approximations of mean weight functions related to such distribution shape

characteristics are also expected of interest to approximate operators that would depend on such functions.

An other such situation of importance is the aggregate structure, the grains of which are polyhedra rather

than ellipsoids, and the realisation of which is only safely consistent (in terms of two-point statistics) with
congruent grains in uniformly grain-shape-homothetic position distribution, as established for ellipsoids in

Bornert et al. (1996). The Radon transform method is likely also helpful in other inclusion-related contexts,
11 The x-breadth of the convex hull of several convex bodies is the maximum of their x-breadths, the x-breadth of the dilatation of

several bodies is their x-breadth sum. For the intercept of several bodies, one can refer to the reciprocal body which is the convex hull

of the reciprocal bodies, etc.
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for example in the very many fields involving evolutive inclusion boundary problems (Sabar et al., 1991),

as well as when co-connected morphologies are concerned, since, as stressed in Section 2, it can also apply

to unbounded domains.
5. Conclusion

The modified Green operator integral related to a general V bounded domain inside a matrix, has been

expressed, for linear elasticity, in terms of its inverse Radon transform, as a weighted average, at each r

point inside V , over an angular distribution of a single elementary operator. The weight function, geo-

metrically defined from all the planar section areas of V passing through the r point, expresses the inverse
Radon transform of the characteristic function of V . The elementary operator, referring to all possible

plane orientations, or directions, in space, identifies to the platelet operator of same planar, or small axis,

orientation. So re-interpreted in a geometrically more meaningful approach, the Green operator integral

calculation can be simplified for general bounded domain shapes, and further manipulations may be

simplified as well. The Radon transform method provides an alternative analytical resolution of the general

inclusion problem in an infinite medium of general elasticity anisotropy, the inclusion being any bounded

domain, single inclusion or inclusion patterns. It also provides insights for analytical resolutions of in-

clusion-related problems, such as effective moduli estimates of heterogeneous materials. The microstruc-
tural characteristics of importance come out to be weight functions related to the involved characteristic

(inclusion or position distribution) shapes, and at first their mean value over the domains defined by these

shapes. The Radon transform approach especially deserves consideration in inclusion-related problems that

do not reduce to ellipsoidal inclusion geometries or ellipsoidal spatial arrangement symmetries. Resolution

then can be thought of in terms of, geometrically-based, calculations of the mean weight functions of the

involved characteristic shapes. In many circumstances, an approximation of the mean weight functions, if

necessary, is likely to provide a more accurate final result than a best ellipsoidal fitting of the shapes

themselves.
Appendix A. Identity of the elementary and platelet (or laminate) operators

The platelet operator expression in the platelet frame (with non-zero terms as given in Table 1) is directly
obtained for the laminate structure for which, taking z ¼ x3 as the layers normal, one has the localisation

relations, between local (r, e) and macroscopic (R, E) stresses and strains
eij ¼ Eij for i and j in ð1; 2Þ; ri3 ¼ Ri3 for i in ð1; 3Þ ðA:1Þ
From the Eshelby isolated inclusion problem, the general strain expression in an ellipsoidal inclusion

uniformly writes e ¼ Eþ t : p, with p a ‘‘polarisation stress’’, and t the ellipsoid operator. If the inclusion is

of platelet (or laminate) shape, it is straightforward that from this strain expression, tijkl ¼ 0 for all terms
such that (i and j) and (k and l) are in (1,2), yielding for t, the same remaining non-zero terms as given by Dt
in Table 1 for the z � 3 platelet. To next show that the non-zero sub-matrix of t for the z-laminate inclusion

identifies to N ¼ M�1 of Table 1, one can refer to the dual Green ‘‘stress’’ approach (Zeller and Dederich,

1973), which involves dual t0 ¼ C� C : t : C operators (conversely t ¼ S� S : t0 : S, with S ¼ C�1) from

which one can write for the stresses, as for the strains, the dual relation r ¼ Rþ t0 : e. Whatever the

‘‘polarisation strain e’’ is in this stress expression, according to the relations given in Eq. (A.1), the t0

operator for the z-laminate inclusion is therefore zero for all t0ijkl terms with either i or j and either k or l
equal to 3. It is in particular zero for the (ijkl) indices corresponding to the non-zero t terms, i.e. those of
the Dt0 block corresponding to the Dt block of Table 1. For these terms, the t0 expression versus t only
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involves Dt and the part of C given by the M matrix, and writes Dt0 ¼ 0 ¼ M�M : Dt : M, yielding

Dt ¼ ½M��1 ¼ N, as in Section 2 from the Green/Fourier approach.
Appendix B. Calculation of the mean weight function of the cube and the octahedron

We consider the sections of the cube (maxðjx1j; jx2j; jx3jÞ ¼ 1), and of the octahedron

(jx1j þ jx2j þ jx3j ¼ 1) with the plane xixi ¼ k, where x1;x2;x3 are the components of the x unit normal

vector to the plane and k the distance between the plane and the origin. The area of the section is deter-

mined first in the standard stereographic triangle x1 < x2 < x3 and extended to the first octant by sym-

metry and permutations, and then to all directions by appropriate symmetries. The sections are polygon
from three to six edges, and the section area S is determined from the area s of the section projection on the

x3 ¼ 0 plane by the relation S ¼ s=x3. The area of the section projection is determined from the projection

of the n section corners which are the intersections of the (k) plane with the faces of the polyhedron, by the

relation s ¼ 1
2

Pn
i¼1ðxi

1x
iþ1
2 � xiþ1

1 xi
2Þ, with the convention xnþ1

j ¼ x1
j , j ¼ 1; 2. The area S is a polynomial

function of k, easy to derive to obtain the mean wV ðxÞ weight function from Eq. (20b). So doing for the

cube and the octahedron respectively in the standard stereographic triangle 06x1 6x2 6x3, yields the

following expressions:

i(i) for the cube
if

if

el

if

el
x1 ¼ 0 then wV ðxÞ ¼
1

4p2

1

x2x2
3

;

x1 þ x2 � x3 > 0 then wV ðxÞ ¼
1

12p2

3x2 � x1

x2
2x

2
3

;

se wV ðxÞ ¼
1

24p2

ðx3 � x1Þ3 þ ðx3 � x2Þ3 þ ðx2 � x1Þ3 þ 6x1x2x3 � ðx3
1 þ x3

2 þ x3
3Þ

x2
1x

2
2x

2
3

 !
:

(ii) for the octahedron
x1 ¼ x2 ¼ 0 then wV ðxÞ ¼
1

p2
;

se wV ðxÞ ¼
1

p2ðx1 þ x2Þ
ðx1 þ x2Þx2

3 þ x1x2x3

ðx1 þ x3Þ2ðx2 þ x3Þ2ðx3 � x1Þ

 !
:
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